Mimosa: using ontologies for modeling and simulation

Jean-Pierre Miiller
CIRAD TA C-47/F, Campus international de Baillarguet
34398 Montpellier cedex 5, France
jean-pierre.muller@cirad.fr

1 Introduction

Modeling is the shared activity for both modeling
and simulation, and knowledge representation. At
the same time, the objectives of these two domains
are not the same and both seem necessary when
dealing with modeling highly structured and com-
plex systems. To face the complexity of the systems
we are trying to model and to simulate nowadays,
the challenge addressed in this paper is to mix both
approaches in a common framework. We first de-
scribe separately the recent advances made in the
modeling and simulation community as well as in
the knowledge representation community. We show
that, despite the same goal to describe a reality, or
at least a part of it, it results in very different, al-
though related concepts. This difference is due to
the focus taken by these communities. The first
community is centered on dynamics, and the sec-
ond one on static descriptions. From the analysis
of the differences and similarities, we propose an
architecture which is being tested in a modeling
and simulation platform: Mimosa. The outcome
is a formal way to pave the path from conceptual
to running models which is sketched in this pa-
per. The achievements and the perspectives are
discussed in the conclusion.

2 Modeling and simulation

Modeling and simulation has been primarily used
to model dynamical processes, initially with differ-
ential equations. In industrial contexts, the the-
ory of control needed more sophisticated repre-
sentations, essentially by composing transfer func-
tions. This need gave rise to a number of for-
malisms for structuring modeling which were fi-

nally unified within a widely recognized framework
called DEVS for Discrete EVent System [8]. DEVS
defines a clear operational semantics and proves
its closure under composition. However, the ma-
nipulation of very complex models called for even
more structured modeling paradigm among which
object-oriented and multi-agent systems. Object-
oriented modeling comes from the intuition that the
dynamics are usually associated to devices or parts
and the overall dynamics arises from the combina-
tion of these parts (e.g; mechanical devices, indus-
trial plants, etc.).

Object-oriented modeling is directly related
to object-oriented languages in computer-science.
However, while object-oriented languages propose
the notions of classes and objects as instances of
classes, only the notion of objects is provided in
most modeling and simulation systems. In effect,
the purpose of modeling is generally focused on
the description of one system, or one category of
systems to simulate. The classes of the objects
constituting the system are usually predefined in
the modeling and simulation platform. Finally,
the organization, possibly hierarchical, of these ob-
jects and their related dynamics are statically de-
termined at modeling time.

3 Knowledge representation
and the ontologies

Independently of the modeling and simulation com-
munity, Artificial Intelligence (AI) developed the
domain of knowledge representation in order to in-
vestigate how human beings talk and reason about
the reality. Initially based on formal logics, Al
moved rapidly towards more structured represen-
tations like frames[5] or conceptual graphs[7], gen-



erally called object-centered representations. In
these representations, one also distinguishes be-
tween concepts (describing categories of objects by
their shared structures) and instances as describ-
ing the objects in their unicity. The concepts and
instances are described by their attributes and re-
lations with, respectively, other concepts or in-
stances. The notions of concept and instance in
object-centered representations does not entirely fit
the notions of class and object in object-oriented
languages. For example, in knowledge representa-
tion, an instance is a kind of concept which denotes
(describes) an individual while in object-oriented
programming, an instance is an individual. As a
consequence, in object-oriented programming, an
instance has a state which evolves independently
of the description of the related class. It is not the
case in knowledge representation where the notion
of state is meaningless because one only describes
what is always true about concepts and instances.

The last outcome of the knowledge representa-
tion domain, with the advent of the semantic web,
is the notion of ontology. According to Gruber[4],
the meaning of ontology in the context of computer
science, however, is “a description of the concepts
and relationships that can exist for an agent or
a community of agents.”. Contemporary ontolo-
gies share many structural similarities, regardless
of the language in which they are expressed. Most
ontologies describe individuals (instances), classes
(concepts), attributes, and relations including the
generalization.

4 Mixing both: the challenges

If ontologies seem appropriate to describe the world
and, then, to provide means for describing cate-
gories of objects and systems, they were only re-
cently used for modeling with the aim of build-
ing models for simulation for mainly two reasons:
(i) the first reason is technical: the ontologies are
mostly used to describe the concepts we are talk-
ing about, providing the so-called conceptual mod-
els. The path from conceptual models to simula-
tion is still long. The first step is to map the con-
ceptual model within a, generally object-oriented,
programming language, defining the classes. The
step further is to instantiate the classes in as many
objects as necessary to build what the modeling

and simulation community finally calls a model.
(ii) the second reason is semantical: as mentioned
earlier when comparing knowledge representation
and object-oriented programming, the notion of in-
stance does not correspond to the notion of object.
For simulation an object has a state because the
system evolves, for knowledge representation an in-
stance does not have any state because the whole
representation is made for reasoning about a state
of the reality, not for evolving it. These obstacles
are the challenges we are facing.

5 Our proposal
Mimosa! is an extensible modeling and simulation
platform ([6]) used to investigate the above men-
tioned challenges.

A conceptual model editor allows the definition
of ontologies using a subset of the UML class dia-
gram equivalent to ontology languages like OWL[2]
or others. The user can define the concepts, their
attributes and their relationships. Because the on-
tologies must define what is universally true, only
information like the cardinality of the attributes
and relations, the types of the attributes and the
concepts a concept can be related to, are described.
Integrity constraints like in data bases are not con-
sidered at that stage. A separated dynamical de-
scription can be attached to each concept describ-
ing the state (distinct from the attributes) and
its dynamics using any formalism which can be
mapped into DEVS.

A model editor manages the instantiation of the
conceptual model into a model, using a superset of
the UML object diagram. This model is considered
as the description of the reality at time 0. A super-
set of UML is defined because the object diagram
in UML is used for illustration and, therefore, is
not rich enough. In particular, we must define the
actual value of each attribute as well as the actual
relations between the objects in the initial situa-
tion. Being still at the knowledge representation
level, we insist that the object diagram is a de-
scription of the reality at the initial time made of
instances.

11t is the french acronym for “Méthodes Informatiques
de MOdélisation et Simulation Agents”: computer science
methods for agent-based modeling and simulation



Finally, a running model is created by generat-
ing the objects in the object-oriented programming
sense from the instances, including states which are
initialized from the descriptions and which shall
evolve by simulation. The scheduler is in charge
of generating the initial state of the system before
running the model.

6 Conclusion

Most of what is described in the previous section
has been implemented and is downloadable from
[1]. The main remaining step is a closer interoper-
ability with ontological languages. It relies on the
possibility to actually load ontologies made with
other systems like Protegee as a base for building
simulation models. In the other hand, the pos-
sibility to export our conceptual models towards
ontology-based systems would expand the possi-
bility to manipulate descriptions and models using
XML, as well as adding reasoning capabilities.

Finally, the need to integrate the multiplicity of
points of view and scales of description for describ-
ing complex systems calls for departing from on-
tologies in the strict sense (i.e. discourse about
beings) to go towards “epistemologies”: i.e. dis-
course about points of view on beings, and ways
to articulate them. The AGR[3] paradigm within
the multi-agent system community is going in this
direction.

References
[1] http://sourceforge.net/projects/mimosa.
[2] http://www.w3.org/2004/owl/, 2004.

[3] Jacques Ferber and Olivier Gutknecht. A meta-
model for the analysis and design of organiza-

tions in multi-agent systems. In Proceedings IC-
MAS ’98, 1998.

4] T. R. Gruber. A translation approach to

[ pp
portable ontologies. Knowledge Acquisition,
5(2):199-220, 1993.

[5] Marvin Minsky. A framework for representing
knowledge. In P. Winston, editor, The psychol-
ogy of computer vision. McGraw-Hill, 1975.

[6] Jean-Pierre Miiller. The mimosa generic model-
ing and simulatiion platform: the case of multi-
agent systems. In Herder Coelho and Bernard
Espinasse, editors, 5th Workshop on Agent-
Based Simulation, pages 77-86, Lisbon, Portu-
gal, May 2004. SCS.

[7] John F. Sowa. Conceptual graphs. In P. Bernus,
K. Mertins, and G. Schmidt, editors, Handbook
on Architectures of Information Systems, pages
287-311. Springer Verlag, 1998.

[8] Bernard P. Zeigler, Tag Gon Kim, and Herbert
Praehofer. Theory of Modeling and Simulation.
Academic Press, 2000.



